
data-dashboard
Release 0.1.1

Maciej Dowgird

May 20, 2021

CONTENTS:

1 Introduction 1

2 Example Dashboard 3
2.1 Dashboard . 3

2.1.1 Creating Dashboard instance . 3
2.1.2 Creating HTML Dashboard . 5
2.1.3 Setting Custom Preprocessors in Dashboard . 7
2.1.4 Using Dashboard as sklearn pipeline . 7
2.1.5 Documentation . 7

2.2 HTML Subpages . 13
2.2.1 Overview . 13
2.2.2 Features View . 14
2.2.3 Models . 17

2.3 Examples . 19
2.3.1 Library examples . 19
2.3.2 Example Dashboard . 19
2.3.3 Documentation . 19

2.4 Questions and Answers . 20
2.4.1 Known Issues / Problems . 21

2.5 License . 21
2.5.1 Contact . 22

2.6 Help . 22

3 Indices and tables 23

Python Module Index 25

Index 27

i

ii

CHAPTER

ONE

INTRODUCTION

data_dashboard library allows you to build HTML Dashboard visualizing not only the data and relationships between
features but also automatically search for the best ‘baseline’ sklearn compatible Model.

You can install data_dashboard with pip:

pip install data-dashboard

Note: Please keep in mind that package name is data-dashboard (with hyphen: ‘-‘) whereas module to import from is
called data_dashboard (with underscore: ‘_’).

To create a Dashboard you need the data: X, y and the output_directory where the HTML files will be placed. You
can use toy datasets from Examples (e.g. iris dataset) included in the library as well:

from data_dashboard import Dashboard
from data_dashboard.examples import iris
output_directory = "your_path/dashboard_output"
X, y, descriptions = iris() # descriptions is additional argument described further in␣
→˓docs

dsh = Dashboard(X, y, output_directory, descriptions)
dsh.create_dashboard()

Note: Depending on the size of your data, fitting process might take some time. Please be patient!

Created HTML Dashboard will contain 3 subpages for you to investigate:

• Overview with summary statistics of the data;

• Features where you can dig deeper into each feature in the data;

• Models showing search results and models performances.

1

data-dashboard, Release 0.1.1

2 Chapter 1. Introduction

CHAPTER

TWO

EXAMPLE DASHBOARD

You can access an example Dashboard with Titanic dataset here: https://example-data-dashboard.herokuapp.com

2.1 Dashboard

2.1.1 Creating Dashboard instance

Features Descriptions Dictionary

Dashboard instance can be created with just X, y and output_directory arguments, but it doesn’t mean
it cannot be customized. The most notable optional argument that can augment the HTML Dashboard is
feature_descriptions_dict dictionary-like object. Structure of the dict should be:

feature_descriptions_dict = {

"Feature1": {

"description": "description of feature1, e.g. height in cm",
"category": "cat" OR "num",
"mapping": {

"value1": "better name or explanation for value1",
"value2": "better name or explanation for value2"

}
},

"Feature2": {

(...)

}

}

• "description" describes what the feature is about - what’s the story behind numbers and values.

• "category" defines what kind of a data you want the feature to be treated as:

– "num" stands for Numerical values;

– "cat" is for Categorical variables;

3

https://example-data-dashboard.herokuapp.com

data-dashboard, Release 0.1.1

• "mapping" represents what do every value in your data mean - e.g. 0 - “didn’t buy a product”, 1 - “bought a
product”.

This external information is fed to the Dashboard and it will be included in HTML files (where appropriate) for your
convenience. Last but not least, by providing a specific "category" you are also forcing the Dashboard to interpret
a given feature the way you want, e.g.: you could provide "num" to a binary variable (only 0 and 1s) and Dashboard
will treat that feature as Numerical (which means that, for example, Normal Transformations will be applied).

Note: Please keep in mind that every argument in feature_descriptions_dict is optional: you can provide all
Features or only one, only "category" for few of the Features and "description" for others, etc.

Other Dashboard instance arguments

already_transformed_columns can be a list of features that are already transformed and won’t need additional
transformations from the Dashboard:

Dashboard(X, y, output_directory,
already_transformed_columns=["Feature1", "pre-transformed Feature4"]
)

classification_pos_label forces the Dashboard to treat provided label as a positive (1) label (classification
problem type):

Dashboard(X, y, output_directory,
classification_pos_label="Not Survived"
)

force_classification_pos_label_multiclass is a bool flag useful when you also provide
classification_pos_label in a multiclass problem type (essentially turning it into classification problem)
- without it, classification_pos_label will be ignored:

Dashboard(X, y, output_directory,
classification_pos_label="Iris-Setosa",
force_classification_pos_label_multiclass=True
)

random_state can be provided for results reproducibility:

Dashboard(X, y, output_directory,
random_state=13,
)

Example

dsh = Dashboard(
X=your_X,
y=your_y,
output_directory="path/output",
features_descriptions_dict={"petal width (cm)": {"description": "width of petal (in␣

→˓cm)"}},
already_transformed_columns=["sepal length (cm)"],

(continues on next page)

4 Chapter 2. Example Dashboard

data-dashboard, Release 0.1.1

(continued from previous page)

classification_pos_label=1,
force_classification_pos_label=True,
random_state=10
)

2.1.2 Creating HTML Dashboard

To create HTML Dashboard from Dashboard instance, you need to call create_dashboard method:

dsh.create_dashboard()

You can customize the process further by providing appropriate arguments to the method (see below).

Models

models stands for collection of sklearn Models that will be fit on provided data. They can be provided in different
ways:

• list of Models instances;

• dict of Model class: param_grid attributes to do GridSearch on;

• None - in which case default Models will be used.

list of Models
models = [DecisionTreeClassifier(), SVC(C=100.0), LogisticRegression()]

dict for GridSearch
models = {

DecisionTreeClassifier: {"max_depth": [1, 5, 10], "criterion": ["gini", "entropy"]},
SVC: {"C": [10, 100, 1000]}

}

None
models = None

Scoring

scoring should be a sklearn scoring function appropriate for a given problem type (e.g. roc_auc_score for classi-
fication). It can also be None, in which case default scoring for a given problem will be used:

scoring = precision_score

Note: Some functions might not work for some type of problems (e.g. roc_auc_score for multiclass)

2.1. Dashboard 5

data-dashboard, Release 0.1.1

Mode

mode should be provided as either "quick" or "detailed" string literal. Argument is useful only when models=None.

• if "quick", then the initial search is done only on default instances of Models (for example SVC(),
LogisticRegression(), etc.) as Models are simply scored with scoring function. Top scoring Models are
then GridSearched;

• if "detailed", then all available combinations of default Models are GridSearched.

Logging

logging is a bool flag indicating if you want to have .csv files (search logs) included in your output directory in logs
subdirectory.

Disabling Pairplots

Both seaborn PairPlot in Overview subpage and ScatterPlot Grid in Features subpage were identified to be
the biggest time/resource bottlenecks in creating HTML Dashboard. If you feel like speeding up the process, set
disable_pairplots=True.

Note: Pairplots are disabled by default when the number of features in your data crosses certain threshold. See also
Forcing Pairplots.

Forcing Pairplots

When number of features in X and y crosses a certain threshold, creation of both seaborn PairPlot and ScatterPlot
Grid is disabled. This was a conscious decision, as not only it extremely slows down the process (and might even lead
to raising Exceptions or running out of memory), PairPlots are getting so enormous that the insight gained from them
is minuscule.

If you know what you’re doing, set force_pairplot=True.

Note: If disable_pairplots=True and force_pairplot=True are both provided, disable_pairplots takes
precedence and pairplots will be disabled.

Example

dsh.create_dashboard(
models=None,
scoring=sklearn.metrics.precision_score,
mode="detailed",
logging=True,
disable_pairplots=False,
force_pairplots=True

)

6 Chapter 2. Example Dashboard

data-dashboard, Release 0.1.1

2.1.3 Setting Custom Preprocessors in Dashboard

set_custom_transformers is a method to provide your own Transformers to Dashboard pipeline. Dashboard
preprocessing is simple, so you are free to change it to your liking. There are 3 arguments (all optional):

• categorical_transformers

• numerical_transformers

• y_transformer

Both categorical_transformers and numerical_transformers should be list-like objects of instantiated Trans-
formers. As names suggest, categorical_transformers will be used to transform Categorical features, whereas
numerical_transformers will transform Numerical features.

y_transformer should be a single Transformer.

dsh.set_custom_transformers(
categorical_transformers=[SimpleImputer(strategy="most_frequent")],
numerical_transformers=[StandardScaler()],
y_transformer=LabelEncoder()

)

Note: Keep in mind that in regression problems, Dashboard already wraps the target in
TransformedTargetRegressor object (with QuantileTransformer as a transformer). See also sklearn
documentation.

2.1.4 Using Dashboard as sklearn pipeline

Dashboard can also be used as a simpler version of sklearn.pipeline - methods such as transform, predict,
etc. are exposed and available. Please refer to Documentation for more information.

2.1.5 Documentation

class data_dashboard.dashboard.Dashboard(X, y, output_directory, feature_descriptions_dict=None,
already_transformed_columns=None,
classification_pos_label=None,
force_classification_pos_label_multiclass=False,
random_state=None)

Data Dashboard with Visualizations of original data, transformations and Machine Learning Models perfor-
mance.

Dashboard analyzes provided data (summary statistics, correlations), transforms it and feeds it to Machine Learn-
ing algorithms to search for the best scoring Model. All steps are written down into the HTML output for end-user
experience.

HTML output created is a set of ‘static’ HTML pages saved into provided output directory - there are no server
- client interactions. Visualization are still interactive though through the use of Bokeh library.

Note: As files are static, data might be embedded in HTML files. Please be aware when sharing produced
HTML Dashboard.

2.1. Dashboard 7

https://scikit-learn.org/stable/modules/generated/sklearn.compose.TransformedTargetRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.compose.TransformedTargetRegressor.html

data-dashboard, Release 0.1.1

Dashboard object can also be used as a pipeline for transforming/fitting/predicting by using exposed methods
loosely following sklearn API.

output_directory
directory where HTML Dashboard will be placed

Type str

already_transformed_columns
list of feature names that are already pre-transformed

Type list

random_state
integer for reproducibility on fitting and transformations, defaults to None if not provided during __init__

Type int, None

features_descriptions
FeatureDescriptor containing external information on features

Type FeatureDescriptor

features
Features object with basic features information

Type Features

analyzer
Analyzer object analyzing and performing calculations on features

Type Analyzer

transformer
Transformer object responsible for transforming the data for ML algorithms, fit to all data

Type Transformer

transformer_eval
Transformer object fit on train data only

Type Transformer

model_finder
ModelFinder object responsible for searching for Models and assessing their performance

Type ModelFinder

X
data to be analyzed

Type pandas.DataFrame, numpy.ndarray, scipy.csr_matrix

y
target variable

Type pandas.Series, numpy.ndarray

X_train
train split of X

Type pandas.DataFrame

X_test
test split of X

Type pandas.DataFrame

8 Chapter 2. Example Dashboard

data-dashboard, Release 0.1.1

y_train
train split of y

Type pandas.Series

y_test
test split of y

Type pandas.Series

transformed_X
all X data transformed with transformer

Type numpy.ndarray, scipy.csr_matrix

transformed_y
all y data transformed with transformer

Type numpy.ndarray

transformed_X_train
X train split transformed with transformer_eval

Type numpy.ndarray, scipy.csr_matrix

transformed_X_test
X test split transformed with transformer_eval

Type numpy.ndarray, scipy.csr_matrix

transformed_y_train
y train split transformed with transformer_eval

Type numpy.ndarray

transformed_y_test
y test split transformed with transformer_eval

Type numpy.ndarray

__init__(X, y, output_directory, feature_descriptions_dict=None, already_transformed_columns=None,
classification_pos_label=None, force_classification_pos_label_multiclass=False,
random_state=None)

Create Dashboard object.

Provided X and y are checked and converted to pandas object for easier analysis and eventually split and
transformed. classification_pos_label is checked if the label is present in y target variable. X is assessed
for the number of features and appropriate flags are set. All necessary objects are created. Transformer and
transformer_eval are fit to all and train data, appropriately.

X
data to be analyzed

Type pandas.DataFrame, numpy.ndarray, scipy.csr_matrix

y
target variable

Type pandas.Series, numpy.ndarray

output_directory
directory where HTML Dashboard will be placed

Type str

feature_descriptions_dict
dictionary of metadata on features in X and y, defaults to None

2.1. Dashboard 9

data-dashboard, Release 0.1.1

Type dict, None

already_transformed_columns
list of feature names that are already pre-transformed

Type list

classification_pos_label
value in target that will be used as positive label

Type Any

force_classification_pos_label_multiclass
flag indicating if provided classification_pos_label in multiclass problem should be forced, de facto
changing the problem to classification

Type bool

random_state
integer for reproducibility on fitting and transformations, defaults to None

Type int, None

create_dashboard(models=None, scoring=None, mode='quick', logging=True, disable_pairplots=False,
force_pairplot=False)

Create several Views (Subpages) and join them together to form an interactive WebPage/Dashboard.

Models can be:

• list of initialized models

• dict of ‘Model Class’: param_grid of a given model to do the GridSearch on

• None - default Models collection will be used

scoring should be a sklearn scoring function. If None is provided, default scoring function will be used.

mode can be:

• “quick”: search is initially done on all models but with no parameter tuning after which top
Models are chosen and GridSearched with their param_grids

• “detailed”: GridSearch is done on all default models and their params

Provided mode doesn’t matter when models are explicitly provided (not None).

Note: Some functions might not work as of now: e.g. roc_auc_score for multiclass problem as it requires
probabilities for every class in comparison to regular predictions expected from other scoring functions.

Depending on logging flag, .csv logs might be created or not in the output directory.

force_pairplot flag forces the dashboard to create Pairplot and ScatterPlot Grid when it was assessed in the
beginning not to plot it (as number of features in the data exceeded the limit).

disable_pairplot flag disables creation of Pairplot and ScatterPlot Grid in the Dashboard - it takes prece-
dence over force_pairplot flag.

HTML output is created in output_directory attribute file path and opened in a web browser window.

Parameters

• models (list, dict, optional) – list of Models or ‘Model class’: param_grid dict
pairs, defaults to None

• scoring (func, optional) – sklearn scoring function, defaults to None

10 Chapter 2. Example Dashboard

data-dashboard, Release 0.1.1

• mode ("quick", "detailed", optional) – either “quick” or “detailed” string, defaults
to “quick”

• logging (bool, optional) – flag indicating if .csv logs should be created, defaults to
True

• disable_pairplots (bool, optional) – flag indicating if Pairplot and ScatterPlot
Grid in the Dashboard should be created or not, defaults to False

• force_pairplot (bool, optional) – flag indicating if PairPlot and ScatterPlot Grid in
the Dashboard should be created when number of features in the data crossed the internal
limit, defaults to False

search_and_fit(models=None, scoring=None, mode='quick')
Search for the best scoring Model, fit it with all data and return it.

Models can be: - list of initialized models - dict of ‘Model Class’: param_grid of a given model to do the
GridSearch on - None - default Models collection will be used

scoring should be a sklearn scoring function. If None is provided, default scoring function will be used.

mode can be:

• “quick”: search is initially done on all models but with no parameter tuning after which top
Models are chosen and GridSearched with their param_grids

• “detailed”: GridSearch is done on all default models and their params

Provided mode doesn’t matter when models are explicitly provided (not None).

Note: Some functions might not work as of now: e.g. roc_auc_score for multiclass problem as it requires
probabilities for every class in comparison to regular predictions expected from other scoring functions.

Parameters

• models (list, dict, optional) – list of Models or ‘Model class’: param_grid dict
pairs, defaults to None

• scoring (func, optional) – sklearn scoring function, defaults to None

• mode ("quick", "detailed", optional) – either “quick” or “detailed” string, defaults
to “quick”

Returns best scoring Model already fit to X and y data

Return type sklearn.Model

set_and_fit(model)
Set provided Model as a best scoring Model and fit it to all X and y data.

Parameters model (sklearn.Model) – instance of ML Model

transform(X)
Transform provided X data with Transformer.

Returns transformed X

Return type numpy.ndarray, scipy.csr_matrix

predict(transformed_X)
Predict target from provided X with the best scoring Model.

2.1. Dashboard 11

data-dashboard, Release 0.1.1

Parameters transformed_X (pandas.DataFrame, numpy.ndarray, scipy.
csr_matrix) – transformed X feature space to predict target variable from

Returns predicted y target variable

Return type numpy.ndarray

best_model()
Return best (chosen) Model used in predictions.

Returns best scoring Model

Return type sklearn.Model

set_custom_transformers(categorical_transformers=None, numerical_transformers=None,
y_transformer=None)

Set custom Transformers to be used in the problem pipeline.

Provided arguments should be a list of Transformers to be used with given type of features. Only one type
of transformers can be provided.

Transformers are updated in both transformer and transformer_eval instances. ModelFinder and Output
instances are recreated with the new transformed data and new Transformers.

Parameters

• categorical_transformers (list) – list of Transformers to be used on categorical
features

• numerical_transformers (list) – list of Transformers to be used on numerical features

• y_transformer (sklearn.Transformer) – singular Transformer to be used on target
variable

12 Chapter 2. Example Dashboard

data-dashboard, Release 0.1.1

2.2 HTML Subpages

2.2.1 Overview

Overview subpage gives general information on the Features - their summary statistics, number of missing values, etc.
(similar to describe method from pandas.DataFrame).

If the number of features isn’t too big, seaborn pairplot is also included.

Note: Feature names in all tables are ‘hoverable’ - upon hovering, corresponding description and mapping will be
shown.

2.2. HTML Subpages 13

https://seaborn.pydata.org/generated/seaborn.pairplot.html

data-dashboard, Release 0.1.1

2.2.2 Features View

Features subpage allows you to dive deeper into each Feature present in your data. Not only summary statistics and
underlying distribution are included, but also transformations and correlations with other features - feature engineering
might be a little bit easier. To change displayed feature, you can click on the ‘burger’ button in the upper left corner
and choose another one from the opened menu.

14 Chapter 2. Example Dashboard

data-dashboard, Release 0.1.1

Note: Depending on the number of features, refreshing the page upon feature selection change might take a while -
please be patient!

Content in Features subpage is divided into subsections that you can easily expand or hide (if the page gets too
cluttered). First two sections provide information on a chosen feature (both original and transformed), whereas the
third section shows correlations between all features (normalized and original), regardless of selection.

Note: When Numerical Feature is selected, Transformations sections will show plots of Normal Transformations.
This should help you make a conscious decision which of the Transformers is the best for that feature (per sklearn
guidance).

2.2. HTML Subpages 15

https://scikit-learn.org/stable/auto_examples/preprocessing/plot_map_data_to_normal.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_map_data_to_normal.html

data-dashboard, Release 0.1.1

ScatterPlot Grid is included in the last section - Bokeh visualization that plots every feature against another as scatter
plots in a manner similar to seaborn pairplot, but with a twist added - every feature is also used as a hue (coloring).
The idea behind it was to provide visual assistance with manual feature engineering (if there are any easily separable
groups).

Note: Row with a chosen Feature on X axis and coloring by the same Feature is greyed out to minimize confusion
(ideally separate colored groups would be present). Greying out was included as an alternative to removing that row,
as it was technically difficult to not break the whole structure of the Grid while doing that.

16 Chapter 2. Example Dashboard

data-dashboard, Release 0.1.1

2.2.3 Models

Models subpage gives information on provided Models performance. Shown results and visualizations will always
correspond to the 3 best scoring Models chosen during HTML Dashboard creation (search methods). Even though
provided plots will be different based on a problem type, scoring table in the upper left corner and predictions table at
the bottom stay the same.

Note: Model names are ‘hoverable’ in a similar manner to Feature Names in Overview subpage - the difference being
that instead of descriptions, used params are shown.

Classification

Models subpage in classification problem generates Plots of performance curves (ROC curve, precision-recall
curve and detection error tradeoff curve) and Confusion Matrices for every model (see sklearn roc,
precision-recall, detection error tradeoff).

2.2. HTML Subpages 17

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.det_curve.html

data-dashboard, Release 0.1.1

Note: Legend is interactive - you can mute lines by clicking at a particular legend entry.

Regression

Models subpage in regression problem generates two Plots for every Model: prediction errors and residuals.

• prediction errors plot shows Actual Target on X axis and Predicted Target on Y Axis;

• residuals plot shows Actual Target on X axis and the difference between Predicted and Actual on Y Axis.

18 Chapter 2. Example Dashboard

data-dashboard, Release 0.1.1

Multiclass

Models subpage in multiclass problem shows you Confusion Matrices for every Model assessed.

2.3 Examples

2.3.1 Library examples

Library comes with few defined toy datasets that you can use if you don’t have any of your data handy.

from data_dashboard.examples import iris, boston, diabetes, digits, wine, breast_cancer
X, y, descriptions = iris() # multiclass
X, y, descriptions = boston() # regression
X, y, descriptions = diabetes() # regression
X, y, descriptions = digits() # multiclass
X, y, descriptions = wine() # multiclass
X, y, descriptions = breast_cancer() # classification

2.3.2 Example Dashboard

Deployed Dashboard example can be found here.

2.3.3 Documentation

data_dashboard.examples.examples.iris()
Return iris dataset with custom descriptions.

Returns X, y, descriptions

Return type tuple

data_dashboard.examples.examples.boston()
Return boston dataset with custom descriptions.

Returns X, y, descriptions

Return type tuple

2.3. Examples 19

https://example-data-dashboard.herokuapp.com/

data-dashboard, Release 0.1.1

data_dashboard.examples.examples.diabetes()
Return diabetes dataset with custom descriptions.

Returns X, y, descriptions

Return type tuple

data_dashboard.examples.examples.digits(n_class=10)
Return digits dataset. Descriptions are None.

Parameters n_class (int, optional) – number of classes to return, defaults to 10

Returns X, y, descriptions

Return type tuple

data_dashboard.examples.examples.wine()
Return wine dataset. Descriptions are None.

Returns X, y, descriptions

Return type tuple

data_dashboard.examples.examples.breast_cancer()
Return breast cancer dataset. Descriptions are None.

Returns X, y, descriptions

Return type tuple

2.4 Questions and Answers

• What types of Machine Learning problems does data_dashboard work on?

Currently classification, regression and multiclass problems are viable. Multilabel problem is not
available.

• How are the Model results calculated?

Provided data is split into train and tests splits. Every time any Models search is initiated, Models are
fit on a train portion of the data, but the scores are calculated on the test portion. However, the chosen
Model (or the one set by you with set_and_fit method) is fit on all data.

• What are the default models used for searches?

You can inspect default models used here.

• What are the default Transformers used?

For Categorical Features:

– SimpleImputer(strategy="most_frequent")

– OneHotEncoder(handle_unknown="ignore")

For Numerical Features:

– SimpleImputer(strategy="median")

– QuantileTransformer(output_distribution="normal")

– StandardScaler()

• Can I provide my own default models to GridSearch instead of those defined in models.py module?

20 Chapter 2. Example Dashboard

https://github.com/maciek3000/data_dashboard/blob/master/data_dashboard/models.py

data-dashboard, Release 0.1.1

Yes! You can do it with models argument in create_dashboard method - you just need to provide
your own dictionary object with Model class: param_grid pairs.

• What to do when I am working on a NLP-related problem?

At the time of building this library, I wasn’t experienced enough to tackle the NLP problem in any
simplified, automated way. The best way to approach it would be to transform the data on your end
and then provide transformed X and y to the Dashboard (with already_transformed_columns
argument as needed).

• Why did you decide on HTML static files instead of server-client architecture (e.g. with bokeh server)?

Two main reasons:

– I wanted to have a lightweight HTML output that doesn’t rely on any server processes (either
localhost or regular ones);

– I have done something similar in my other project and I wanted to try something new.

2.4.1 Known Issues / Problems

• Multilabel problem type is currently not supported.

• Features subpage might get laggy when trying to change feature selection and when number of all features in
the data is high.

• CSS/HTML might get wonky sometimes.

2.5 License

Copyright (c) 2021 Maciej Dowgird

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

2.5. License 21

https://github.com/maciek3000/GnuCash-Expenses-Vis

data-dashboard, Release 0.1.1

2.5.1 Contact

Question? Please contact dowgird.maciej@gmail.com

2.6 Help

Question? Please contact dowgird.maciej@gmail.com or open an issue on github: https://github.com/maciek3000/
data_dashboard/issues

22 Chapter 2. Example Dashboard

mailto:dowgird.maciej@gmail.com
mailto:dowgird.maciej@gmail.com
https://github.com/maciek3000/data_dashboard/issues
https://github.com/maciek3000/data_dashboard/issues

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

23

data-dashboard, Release 0.1.1

24 Chapter 3. Indices and tables

PYTHON MODULE INDEX

d
data_dashboard.examples.examples, 19

25

data-dashboard, Release 0.1.1

26 Python Module Index

INDEX

A
already_transformed_columns

(data_dashboard.dashboard.Dashboard
attribute), 8

analyzer (data_dashboard.dashboard.Dashboard
attribute), 8

B
best_model() (data_dashboard.dashboard.Dashboard

method), 12
boston() (in module data_dashboard.examples.examples),

19
breast_cancer() (in module

data_dashboard.examples.examples), 20

C
create_dashboard() (data_dashboard.dashboard.Dashboard

method), 10

D
Dashboard (class in data_dashboard.dashboard), 7
data_dashboard.examples.examples

module, 19
diabetes() (in module

data_dashboard.examples.examples), 19
digits() (in module data_dashboard.examples.examples),

20

F
features (data_dashboard.dashboard.Dashboard

attribute), 8
features_descriptions

(data_dashboard.dashboard.Dashboard
attribute), 8

I
iris() (in module data_dashboard.examples.examples),

19

M
model_finder (data_dashboard.dashboard.Dashboard

attribute), 8

module
data_dashboard.examples.examples, 19

O
output_directory (data_dashboard.dashboard.Dashboard

attribute), 8

P
predict() (data_dashboard.dashboard.Dashboard

method), 11

R
random_state (data_dashboard.dashboard.Dashboard

attribute), 8

S
search_and_fit() (data_dashboard.dashboard.Dashboard

method), 11
set_and_fit() (data_dashboard.dashboard.Dashboard

method), 11
set_custom_transformers()

(data_dashboard.dashboard.Dashboard
method), 12

T
transform() (data_dashboard.dashboard.Dashboard

method), 11
transformed_X (data_dashboard.dashboard.Dashboard

attribute), 9
transformed_X_test (data_dashboard.dashboard.Dashboard

attribute), 9
transformed_X_train

(data_dashboard.dashboard.Dashboard
attribute), 9

transformed_y (data_dashboard.dashboard.Dashboard
attribute), 9

transformed_y_test (data_dashboard.dashboard.Dashboard
attribute), 9

transformed_y_train
(data_dashboard.dashboard.Dashboard
attribute), 9

27

data-dashboard, Release 0.1.1

transformer (data_dashboard.dashboard.Dashboard
attribute), 8

transformer_eval (data_dashboard.dashboard.Dashboard
attribute), 8

W
wine() (in module data_dashboard.examples.examples),

20

X
X (data_dashboard.dashboard.Dashboard attribute), 8
X_test (data_dashboard.dashboard.Dashboard at-

tribute), 8
X_train (data_dashboard.dashboard.Dashboard at-

tribute), 8

Y
y (data_dashboard.dashboard.Dashboard attribute), 8
y_test (data_dashboard.dashboard.Dashboard at-

tribute), 9
y_train (data_dashboard.dashboard.Dashboard at-

tribute), 8

28 Index

	Introduction
	Example Dashboard
	Dashboard
	Creating Dashboard instance
	Features Descriptions Dictionary
	Other Dashboard instance arguments
	Example

	Creating HTML Dashboard
	Models
	Scoring
	Mode
	Logging
	Disabling Pairplots
	Forcing Pairplots
	Example

	Setting Custom Preprocessors in Dashboard
	Using Dashboard as sklearn pipeline
	Documentation

	HTML Subpages
	Overview
	Features View
	Models
	Classification
	Regression
	Multiclass

	Examples
	Library examples
	Example Dashboard
	Documentation

	Questions and Answers
	Known Issues / Problems

	License
	Contact

	Help

	Indices and tables
	Python Module Index
	Index

